Enrollment No:	Exam Seat No:	
	C.U.SHAH UNIVERSITY	
	Summer Examination-2020	

Subject Name: Fundamental of Electrical Engineering

Subject Code: 4TE01FEE1	Branch: B.Tech (All)
-------------------------	----------------------

Semester: 1 Date: 28/02/2020 Time: 02:30 To 05:30 **Marks**: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
 (3) Draw neat diagrams and figures (if necessary) at right places

	Attempt the following questions:
1)	Unit of resistivity is
	A) ohm-meter B) ohm/meter C) meter/ohm D) ohm/meter ²
2)	Which one of the below material has highest resistance?
	A) Conductors B) Insulators C) Electrolytes D) Semiconductor
3)	If the distance between the plate of capacitor incerases, its capacitance
	A) Increases B) Remains constant C) Decreases D) None of the above
4)	When four capacitors of $1\mu F$ are connected in parallel, the resultant capacitance will be
5)	A) 1 μF B) 0.25 μF C) 0.50 μF D) 4 μF The energy stored in magnetic field of inductor is given by the expression
6)	A) $0.5 (Li)^2$ B) $0.5 Li^2$ C) Li D) $2Li^2$ The unit of permeability is
	A) Henry/Metre B) Weber C) Henry D) Metre/ Henry
	Flux of a magnetic circuit is analogous to
7)	1 1 mil 01 m 1 m m m m m m m m m m m m m m m m
7)	A) Electric Field Intensity B) Current density C) Electric current D) Resistance

		voltage, then $V_{rms} = $	
		A) V_m B) $\frac{V_m}{2}$ C) $\frac{3V_m}{2}$ D) $\frac{V_m}{\sqrt{2}}$	
	10)	For a purely inductive AC circuit, inductor current leads the supply voltage by 90 degree angle.	
	11)	A) True B) False At higher frequencies, the value of inductive reactance	
		A) Decreases B) Remains same C) Increases D) Depends on applied voltage	
	12)	In a series R-L-C circuit, at resonance current is maximum.	
		A) True B) False	
	13)	A transformer operates	
		A) On DC supply only B) On AC supply only C) Both AC and DC supply	
	14)	A transformer transforms	
		A) Voltage and Current B) Voltage C) Current D) Frequency	
Attem	pt any	y four questions from Q-2 to Q-8	
Q-2	(a)	Attempt all questions Explain the effect of temperature on resistance for the given materials.	(14) 07
		i) Pure Metals ii) Alloys iii) Insulators and Semiconductors	
	(b)	Derive an expression for 'n' number of resistances connected in parallel. Give the	07
		advantages of parallel connection.	
Q-3		Attempt all questions	(14)
	(a)	State Faraday's first law and second law electromagnetic induction. Derive the	07
		equation of induced emf $e = N \frac{d\phi}{dt}$. Where N= Number of turns in a coil, ϕ = flux in	
		the coil.	
	(b)	Derive the equation of flux $\phi = \frac{NI}{S}$ for a magnetic circuit. Where,	07
		<i>I</i> = Current through the magnetic circuit.	
		N= Number of turns in a magnetic circuit.	
		S= Reluctance of the magnetic circuit.	
Q-4		Attempt all questions	(14)
	(a)	Explain the action of a capacitor and derive the equation for the capacitance $C = \frac{Q}{Q}$	07

	(b)	Derive an expression for the equivalent capacitance for a number of capacitors connected in	07
		Series ii) Parallel	
Q-5		Attempt all questions	(14
	(a)	Obtain an expression for the equivalent delta network resistance for a given star network.	07
	(b)	Derive the relationship between the voltage and current for purely resistive AC circuit. Draw the waveforms and phasor for voltage and current.	07
Q-6		Attempt all questions	(14)
	(a)	Draw the power triangle. From the power triangle define i) Active power ii) Reactive power iii) Apparent power iv) Power factor	07
	(b)	Explain the following sinusoidal function terminology. i) Amplitude ii) Angular Frequency iii) Time period	07
Q-7		Attempt all questions	(14)
	(a)	For a three phase star connected balance system, Derive the relation between i) Phase Voltage and Line Voltage ii) Phase Current and Line Current	07
	(b)	Give various wattmeter methods for measuring power in three phase circuits and explain any one of them.	07
Q-8		Attempt all questions	(14)
	(a)	Explain the theory of an ideal transformer. Explain the construction of core type transformer.	07
	(b)	Derive the emf equation $e = 4.44 fN \phi_m$ for a single phase transformer Where f= frequency of supply, N= number of turns either primary or secondary side, $\phi_m =$	07

